

Profa Aline Akemi Ishikawa

O sucesso terapêutico do tratamento de doenças em humanos depende de bases farmacológicas que permitam a escolha do medicamento correto, de forma científica e racional. Mais do que escolher o **fármaco adequado** ("certo") também é necessário selecionar o mais adequado às **características fisiopatológicas**, idade, sexo, peso corporal e raça do paciente.

Como a intensidade dos efeitos, terapêuticos ou tóxicos, dos medicamentos depende da concentração alcançada em seu sítio de ação, é necessário escolher **doses** que garantam a chegada, a ação e a manutenção das concentrações terapêuticas junto aos sítios moleculares de reconhecimento no organismo, também denominados sítios receptores.

O estabelecimento de **esquemas posológicos padrões e de seus ajustes** na presença de situações fisiológicas (idade, sexo, peso, gestação), hábitos do paciente (tabagismo, ingestão de álcool) e algumas doenças (insuficiência renal e hepática) é orientado por informações provenientes de uma boa anamnese.

Fases envolvidas na resposta terapêutica

I fase farmacêutica

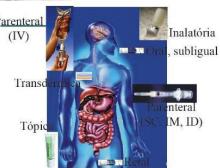
- Desintegração da forma farmacêutica
- Dissolução do fármaco

II fase farmacêutica

- Absorção
- Distribuição
- Metabolismo
- Excreção

III fase farmacodinâmica

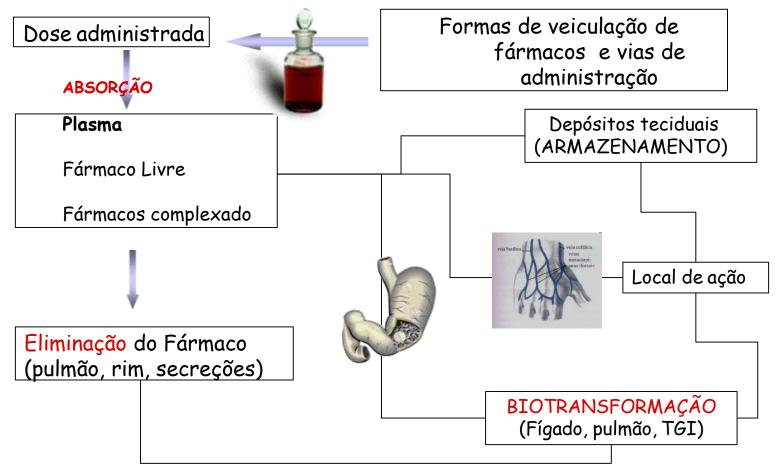
Interação fármaco-receptor no tecido alvo


- ❖ É a ciência que estuda o movimento dos medicamentos no organismo e de que maneira os mecanismos fisiológicos atuam nos fármacos.
- ❖ Estuda quantitativamente a cronologia dos processos de absorção, distribuição biotransformação e eliminação.
- Correlação com a via de administração, dose, concentração, forma farmacêutica propriedades físico-química dos fármacos.

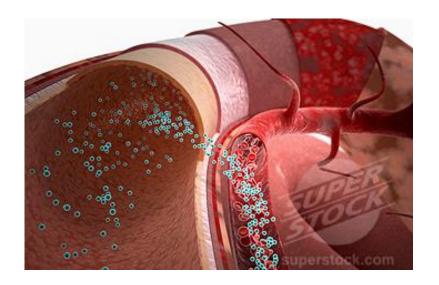
- Importância prática
- 1) Determinação adequada da posologia de acordo com:
- Forma farmacêutica
- Dose indicada no caso clínico
- Intervalo entre as doses
- Vias de administração

- Importância prática
- 2) Reajuste da posologia, quando necessário, de acordo com a resposta clínica.
- 3) Melhor compreensão da ação dos fármacos, pois a intensidade e a duração dos efeitos dependem dos processos farmacocinéticos
- 4) Posologia em situações especiais

- Importância prática
- 5) Interpretação de resposta inesperada (ausência de efeito ou efeitos colaterais pronunciados).
- Não respeitar as instruções
- Falta de orientação adequada
- Modificações da biodisponibilidade
- Erros de medição
- Interações medicamentosas
- Cinética anormal (distribuição e eliminação)


Não tomar sem água.

Não tomar com leite, chá ou café.



ABSORÇÃO DE FARMAÇOS

1. Absorção

Compreende as diversas passagens dos fármacos através de membranas biológicas desde o local de administração até os líquidos de distribuição do organismo (plasma sanguíneo).

Locais de absorção das Fármacos

Trato gastrointestinal

- Mucosa bucal
- Mucosa gástrica
- Mucosa do intestino delgado
- Mucosa retal

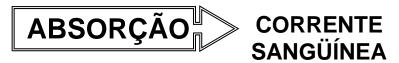
Trato respiratório

- Mucosa nasal
- Mucosa traqueal e brônquica
- Alvéolos pulmonares

Mucosa conjuntival

Mucosa geniturinária

- Mucosa vaginal
- Mucosa uretral


Pele

Absorção

ABSORÇÃO DE FÁRMACOS

LOCAL DE ADMINISTRAÇÃO

PERDAS QUANTITATIVAS E QUALITATIVAS

DIFERENÇAS ENTRE VIAS

Movimento das moléculas através das membranas biológicas

Estrutura da membrana celular

Ambiente externo

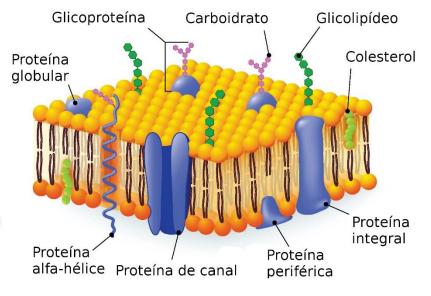
Fluido intersticial

Sangue/plasma

Fluido intersticial

Fluido intracelular

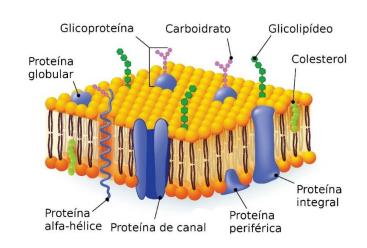
Fluido intracelular


Mucosa ou pele

Membrana capilar

Membrana capilar

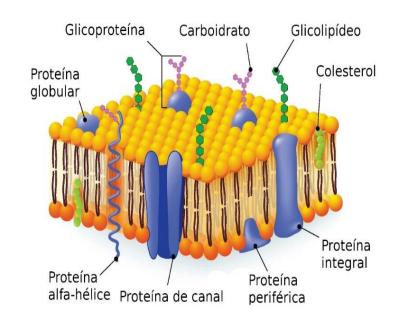
Membrana celular do tecido


Membrana da organela

Movimento das moléculas através das membranas biológicas

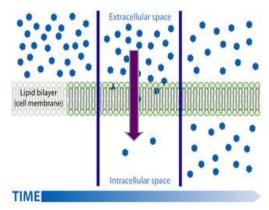
Estrutura da membrana celular (barreira celular)

- ☐ Constituída por duas camadas lipídicas fluidas e contínuas onde estão inseridas moléculas protéicas e receptores específicos.
- Os três principais grupos de lipídios da membrana são:

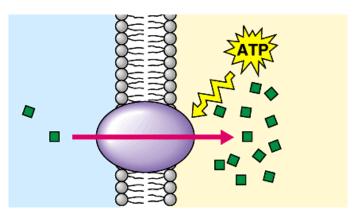


- ✓ Fosfolipídeos (manter a estrutura da membrana)
- ✓ Colesterol (torna a bicamada menos sujeita a deformações)
- ✓ Glicolipídeos (auxiliam na proteção)

Movimento das moléculas através das membranas biológicas


Estrutura da membrana celular (barreira celular)

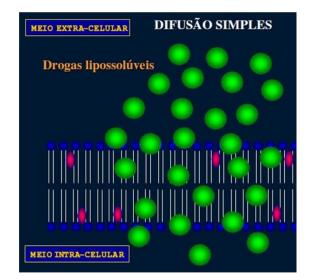
- Proteínas transmembranas: são proteínas que atravessam toda a membrana e que são capazes de realizar o processo de transporte dos fármacos.
- 2. **Proteínas de canais**: são proteínas capazes de realizar o transporte de moléculas pequenas, apolares e hidrossolúveis, além de água e íons.

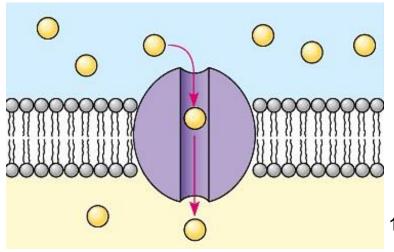


Transporte através das membranas:

- 1. Processos passivos: sem gasto de energia, onde a membrana biológica funciona como uma estrutura inerte e porosa, que os fármacos ultrapassam por simples difusão.
- 2. Processos ativos: com gastos de energia., onde o fármacos atravessa a membrane ligado em uma carreador proteíco, contra um gradiente de concentração.

A favor do gradiente concentração

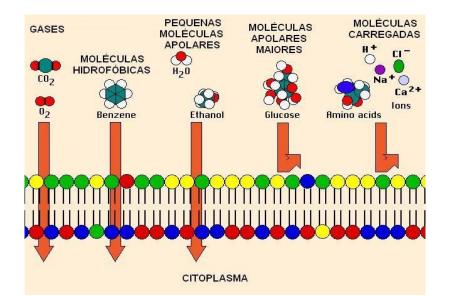



Contra gradiente concentração

(transporte passivo)

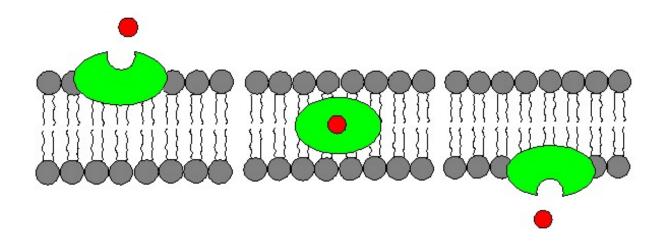
1.1 Difusão simples ou passiva

Os fármacos para poderem passar pela membrana por esse processo devem apresentar duas características principais: lipossolubilidade e não estar forma ionizada. O neste processo o fármaco ocorre a dissolução do fármaco na camada lipídica, passando facilmente do meio externo para o interno.



(transporte passivo)

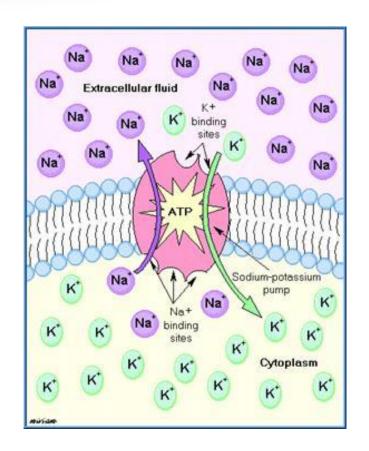
1.2 Difusão através de poros


- Mecanismo comum para transferências de substâncias pequenas (hidrossolúveis, apolares ou polares). Ex.:Água, uréia e etanol.
- ✓ Fármaco atravessa a membrana celular através de canais aquosos (varia de diâmetro de acordo com a localização)

(transporte passivo)

1.3 Difusão Facilitada

✓ Transporte sem gasto de energia, mediado por carreador no qual o substrato (fármaco) se move a favor do gradiente de concentração.



(transporte ativo)

2 Transporte Ativo

O transporte ativo ocorre com gasto de energia e, assim como na difusão facilitada, ocorre com a ajuda de proteínas carreadoras, que são denominadas de bombas. Diferentemente da difusão, no entanto, o transporte ocorre contra o gradiente de concentração.

2.1 - O exemplo mais conhecido de transporte ativo é a bomba de sódio e potássio.

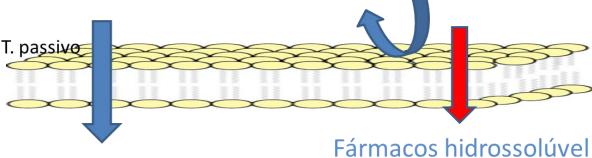
(transporte ativo)

2 Transporte Ativo

Há ainda dois processos em que não apenas moléculas específicas, como também a própria estrutura da membrana celular, estão envolvidas no transporte de matéria (principalmente de grandes moléculas) para dentro e para fora da célula:

2.2 Endocitose

- **2.2.1 –** Fagocitose: Ocorre com partículas sólidas, é o "comer celular".
- **2.2.2 –** Pinocitose: Ocorre com partículas líquidas, é o "beber celular".


2.3 Exocitose

Processo ativo no qual o material intracelular é transportado, através de vesículas, para o meio extracelular

- 1- Solubilidade
- 2- Influência do pH e do pKa
 - 3- Área de Superfície
- 4- Concentração do Fármaco
 - 5 Circulação Local

1- Solubilidade

Fármacos lipossolúvel

Ajuda de transportadores (ativo) Canais hidrofílicos (passivo)

1- Solubilidade

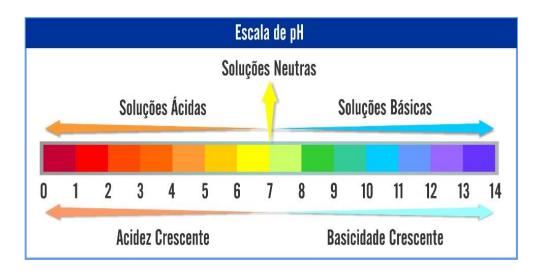
Fármacos lipossolúveis

Quanto maior o coeficiente de partição óleo/água, mais lipossolúvel será o fármaco

Exemplo:

- 1) Coeficiente de fármaco A: 60/40
- 1) Coeficiente do fármaco B: 80/20

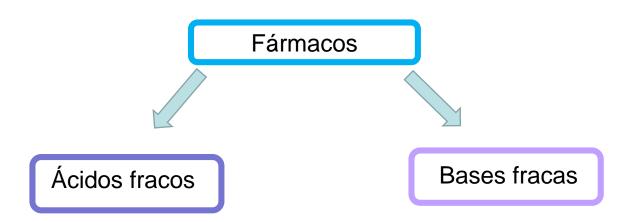
Quem será mais lipossolúvel???


Fármacos hidrossoluvéis

São fármacos solúveis em água e para que consigam ser absorvidos devem ser moléculas relativamentes pequenas, ou utilizar de carreadores

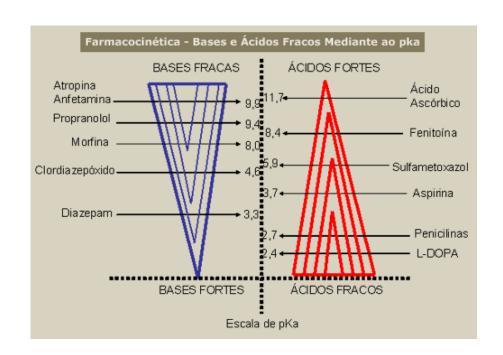
2- Influência do pH e do pKa

pH: é potencial hidrogênico. Quantidade de hidrogênio do meio.



MEIO PODE SER:

- Ácido
- Neutro
- Básico


2- Influência do pH e do pKa

pKa: constante de dissociação ou ionização do fármacos.

Caráter de fármacos

ÁCIDOS	BÁSICOS
Antimicrobianos	Rifampicina,
Penicilina,	Lincomicina,
Sulfamidas,	Alcalóides em geral,
Ácido Cítrico,	Quinina,
Ácido	Xantinas,
Ascórbico,	Anfetaminas,
Anticoagulantes	Antihistamínicos,
(heparina), Metrotexato.	Imipramina (ADT).
oo.o.xato.	

2- Influência do pH e do pKa

Como saber se a substâncias serão bem absorvidas em um determinado local?

Na equação de Henderson-Hasselbalch:

Bases
$$pH - pKa = log_{10} [moléculas]$$
 [íons]

Fatores que influenciam na absorção Acidos PKA - PH= log₁₀ [moléculas]

Exercícios

Bases $pH - pKa = log_{10} [moléculas]$ [íons]

[ions]

Exemplo 1: O AAS (pKa 3,5) e foi colocado no estômago (pH 1,5). Qual a quantidade de fármaco que serão absorvidos?

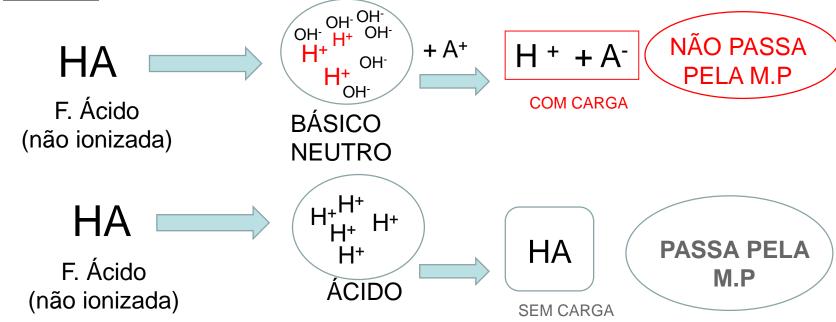
$$pKa - pH = log_{10} \frac{(moléculas)}{(ions)}$$

$$3.5 - 1.5 = log_{10} \frac{(mol\'{e}culas)}{(\'{o}ns)}$$

$$2.0 = log_{10} \frac{(moléculas)}{(ions)}$$

$$10^{2} = \frac{(moléculas)}{(ions)}$$

$$\frac{100 = (moléculas)}{1}$$
 (íons)

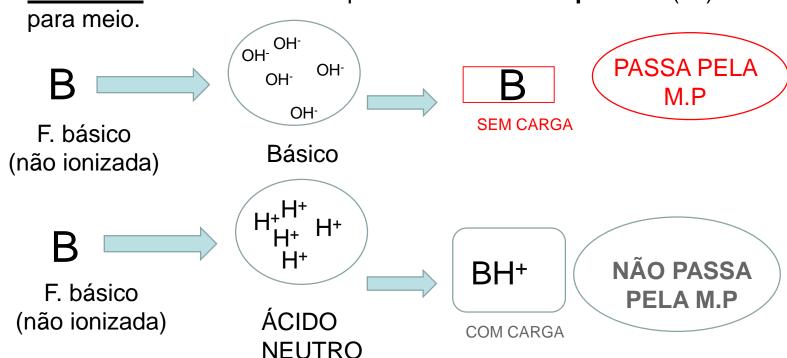

Conclusão: tem 100 moléculas não ionizadass e 1 molécula ionizada, portanto este fármaco será bem absorvida em meio ácido.

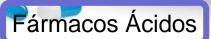
2- Influência do pH e do pKa

pKa: constante de dissociação ou ionização do fármacos.

Regra de Browsted –Lewis

Acidos são substâncias capazes de doar protons (H+) para meio.

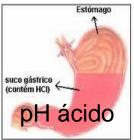



2- Influência do pH e do pKa

pKa: constante de dissociação ou ionização do fármacos.

Regra de Browsted –Lewis

BASICOS são substâncias capazes de RECEBER protons (H+)



DOA H+

Fármacos Ácidos

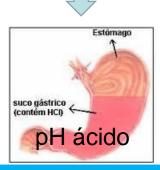
Formas sem carga

Maior absorção

Formas com carga

Menor absorção

Fármacos ácidos são melhores absorvidos no estômago (locais ácidos). Fármacos ácidos + locais ácidos = bem absorvidos


Fármacos Básicos

pH básico

Formas sem carga

Maior absorção

Formas com carga

Menor absorção

Fármacos básico são melhores absorvidos no intestino (locais básico). Fármacos básicos + locais básicos = bem absorvidos

Fatores que influenciam na absorção Acidos PKA - PH= log₁₀ [moléculas]

Bases pH – pKa = log₁₀ [moléculas]

[ions]

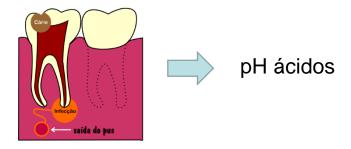
EXERCÍCIOS: ácidos (pka 1-6) Básico (pka 8 -13)

- 1. Droga A (pKa 5) em ácido (pH 3) = BEM ABSORVIDO
- 2. DROGA B (pKa 9) em ácido (pH 4) = POUCO ABSORVIDO
- 3. DROGA C (pKa 3) em básico (pH 9) = POUCO ABSORVIDO


4. DROGA D (pKa 9) em básico (pH 10)= Bem ABSORVIDO

Nível normal pH nos compartimentos orgânicos	
Compartimento	Níveis normais de pH
SANGUE	7.2 – 7.6
COLON	7.0 – 7.5
SACO CONJUNTIVAL	7.3 – 8.0
DUODENUM	4.8 - 8.2
JEJUNO E ILEO	7.5 – 8.0
LEITE MATERNAL	6.5 - 6.7
BOCA	6.2 - 7.2
ESTÔMAGO	1.0 - 3.0
SUOR	4.3 – 4.7
URETRA	5.0 - 7.0
VAGINA	3.4 – 4.2

De acordo com o pKa do fármaco e o pH do local, o fármaco serão mais (formas moleculares) ou menos absorvidos (formas ionizadas)


Anestésicos Locais

Base Fraca - pKa em torno de 8 a 9

Xilocaína

Locais inflamados e infectados

Estes locais costumam ser muito irrigados podendo remover o anestésico do local, antes que faça efeito.

Fatores que influenciam na absorção

3- Área de Superfície:

- Quanto maior a área maior a absorção.
- Exemplo: Pulmão e Intestino

4- Concentração do Fármaco:

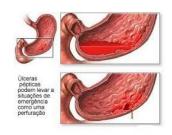
- Quanto maior a concentração de droga administrada maior absorção do fármaco.

5 - Circulação Local:

- Vasodilatação: aumenta absorção
- Vasoconstrição: diminui a absorção (mais no local)
- Exemplo: Tabagismo

Fatores que influenciam na absorção

6. FATORES QUE <u>ATRASAM</u> O ESVAZIAMENTO GÁSTRICO


1.Alimentares

- ✓ Alimentos Quentes
- ✓ Alimentos Ácidos
- ✓ Alimentos Espessos ou Viscosos
- ✓ Alimentos com teor elevado em sal ou açúcar, gorduras ou proteínas

2. Independentes da alimentação

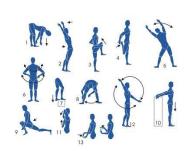
- ✓ Stress
- √ Hipotiroidismo
- ✓ Úlcera Gástrica

Ex: Gorduras aumentam a Absorção

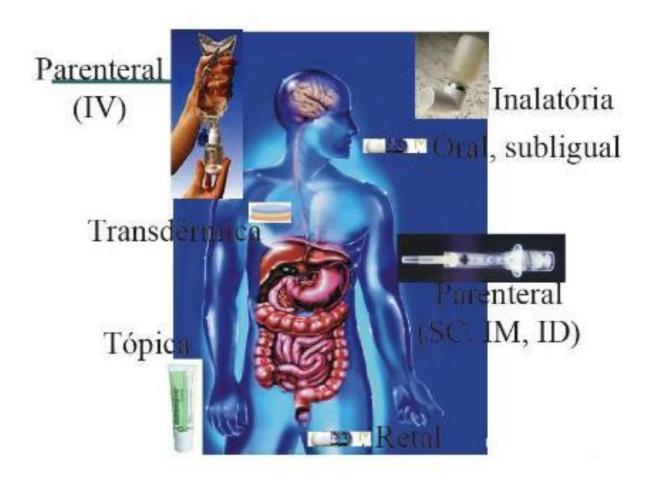
de Fármacos lipossolúveis

Fatores que influenciam na absorção

6. FATORES QUE <u>ACELERAM</u> O ESVAZIAMENTO GÁSTRICO


1. Alimentares

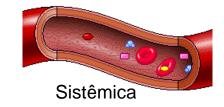
- ✓ Alimentos Frios
- ✓ Alimentos Alcalinos
- ✓ Alimentos Líquidos
- ✓ Alimentos com teor baixo em sal ou açúcar, gorduras ou proteínas
- ✓ Líquidos com teor elevado de Gás (refrigerantes, água c/ gás)


2. INDEPENDENTES DA ALIMENTAÇÃO

✓ Exercício Físico

Ex: medicamento oral tomados com líquidos (água) aceleram passagem para o intestino

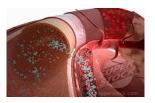
VIAS DE ADMINISTRAÇÃO DE Fármacos


O ideal seria administração do fármaco no local ou próximo do local de ação.

Os fármacos pode exercer ação:

- LOCAL: não passa pela corrente sanguínea
- > SISTÊMICA: passa pela corrente sanguínea

Local



Portas de entrada dos fármacos:

Trato gastrointestinal;

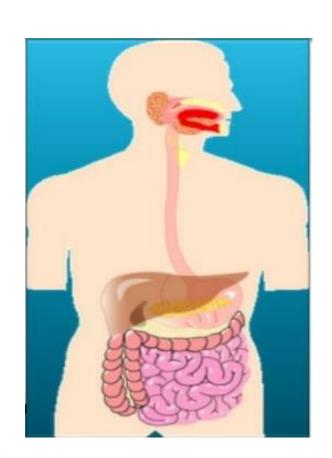
Parede capilar (sangue)

Propriedades das Fármacos.

- Biodiponibilidade: indica a fração do fármacos que atinge o local de ação de forma inalterada. Quando um fármaco é totalmente absorvidos, sua biodisponibilidade é 100% (via endovenosa).
- ☐ **Bioequivalência:** equivalência farmacêutica entre dois produtos, mesmo principio ativo, dose, via de admnistração.
- ☐ Efeito de primeira passagem: é quando o fármacos sofre um metabolismo no fígado antes de alcançar a circulação sanguínea.

Critérios de escolha da via:

Rapidez de ação:

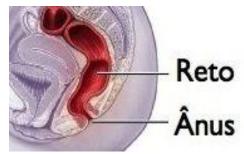

Patologia e local de ação

Dose de ataque e dose de manutenção.

Efeito: Tópico

Sistêmico

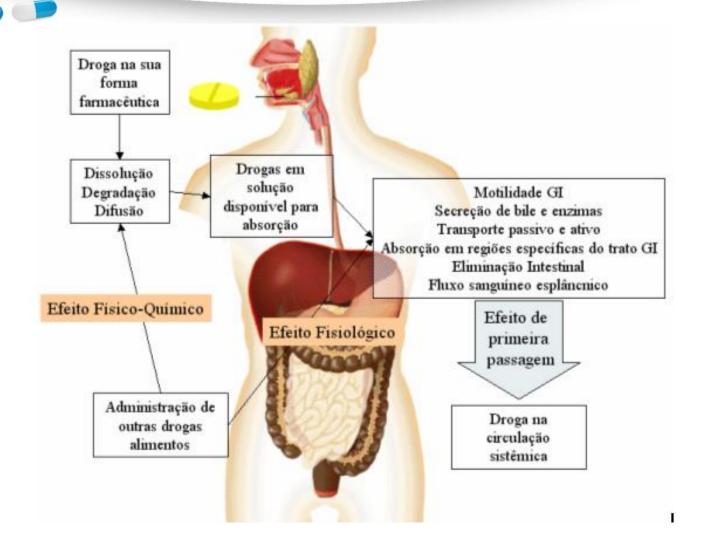
- Natureza do Fármaco
- Forma Farmacêutica: Liberar o P.A.



Sublingual

Oral

Retal


Bucal

ABSORÇÃO: Mucosa do trato gastrointestinal

- Mucosa gástrica:
- ✓ pH baixo
- Mucosa intestino delgado
- ✓ Constitui a principal e mais extensa superfície de absorção do TGI.
- ✓ O intestino delgado possui uma superfície de absorção com cerca de 200 m².

Mucosa do cólon

- Especializada na secreção de muco e na reabsorção de água;
- Apesar de poder absorver Fármacos não efetua esta função como tarefa habitual.

Absorção por via oral

Suco gástrico

Esvaziamento gástrico

Circulação porta

Duodeno

- Maior Absorção
- Mais irrigado
- Microvilosidades

Circulação hepática

Circulação sistêmica

48

■ Na via oral a concentração no sangue é alcançada de maneira GRADUAL

 As formas farmacêuticas são: cápsulas, comprimidos, soluções, suspensões, e xaropes

Exemplos: codeína, morfina, paracetamol, dipirona, amoxicilina

Vantagens via ORAL

- ✓ Maior segurança e comodidade.
- ✓ Mais comum, mais econômica e mais conveniente.
- ✓ Estabelecimento de esquemas terapêuticos fáceis de serem cumpridos pelo paciente.
- ✓ Absorção intestinal favorecida pela: grande superfície, tempo de permanência.
- ✓ Fácil remoção dos conteúdos em uma intoxicação.

Desvantagens via ORAL

✓ Necessidade de cooperação do paciente.

- ✓ Não permite usar esta via em casos de vômitos e nauseas.
- ✓ Imprópria para substâncias irritantes ou de sabores desagradáveis.
- ✓ Incapacidade de absorver alguns fármacos por causa de suas características físico-químicas (ex.: polaridade).
- ✓ Irregularidades na absorção, na presença de alimentos ou outros fármacos.
- ✓ Destruição de alguns fármacos por enzimas digestivas ou pelo baixo pH gástrico (aminoglicosídeos).
- ✓ Sofre efeito de primeira passagem

1.2 - Via enteral SUBLINGUAL

- A absorção é facilitada pela existência de epitélio estratificado pavimentoso, não queratinizado, e pela rica vascularização.
- □ A circulação venosa desemboca, na veia jugular (fogem à ação do fígado).
- □ A absorção é muito rápida, especialmente na zona sublingual, na base da língua e na parede interna das bochechas.

1.2 - Via enteral SUBLINGUAL

Vantagens via SUBLINGUAL

- ✓ Não há efeito de primeira passagem
- ✓ Não sofre ação do pH gástrico
- ✓ Exemplos: Toragesic (cetorolaco de trometacina)

Desvantagens via SUBLINGUAL

✓ Imprópria para substâncias irritantes ou de sabores desagradáveis.

foot com

1.3 - Via enteral BUCAL

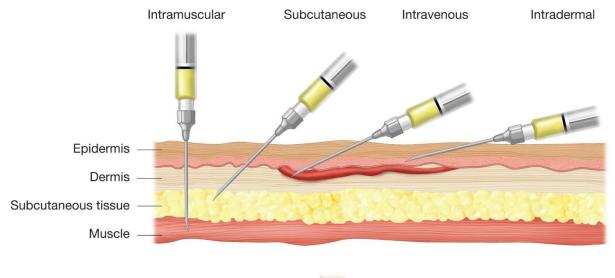
- O fármaco é depositado na mucosa bucal com intuito de obter efeitos locais
- Formas farmacêuticas: pastilhas, colutórios e comprimidos bucais
- □ Exemplos: colutório a base de digluconato de clorexidina (antisséptico a 0,12% no pós cirúrgico; buchecho com flúor e nistatina (antifúngico)

1.4 - Via enteral RETAL

- □ Parte do fármacos absorvidos não sofre metabolismo pré-sistêmico (efeito de primeira passagem), indo direto para a corrente sanguínea . A outra parte segue o trajeto do sistema porta.
- As Fármacos destinadas à administração retal são formuladas em forma de supositórios sólidos (manteiga de cacau ou óleo sintético).
- Exemplos: dipirona supositório

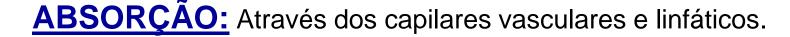
1.4 - Via enteral RETAL

Vantagens via RETAL


- ✓ Administração de medicamentos a paciente inconscientes ou com náuseas e vômitos, particularmente em lactentes, crianças, idosos e doentes mentais.
- ✓ Certas Fármacos que provocam irritação gastrointestinal excessiva.

Desvantagem via RETAL

- ✓ Absorção Irregular e Incompleta.
- ✓ Irritação da Mucosa Retal.
- ✓ Motilidade Intestinal.
- ✓ Presença de Fezes.


Subcutaneous

Intramuscular

Intradermal

Intravenous

2.1 – Via parenteral INTRAMUSCULAR

Locais mais utilizados para admnistração: Músculo Deltóide, Músculo glúteo (e lateral da coxa.

- A absorção depende do fluxo sanguíneo do músculo utilizado. O volume máximo a ser injetado varia de 2 a 5 mL
- Importante assepsia local e a aspiração da injeção para certificar que a agulha está fora de um vaso sanguíneo
- Formas farmacêuticas: soluções, pós para solução ou suspensão injetável.
- Exemplos: cetoprofeno, betametasona e dexametasona

2.1 – Via parenteral INTRAMUSCULAR

Vantagens via intramuscular

- ✓ Absorção rápida.
- ✓ Administração em pacientes mesmo inconscientes.
- ✓ Adequada para volumes moderados, veículos aquosos, não aquosos e suspensões.

2.1 – Via parenteral INTRAMUSCULAR

Desvantagem via intramuscular

- ✓ Dor.
- ✓ Aparecimento de processos inflamatórios pela injeção de substâncias irritantes ou mal absorvidas.
- ✓ Não há absorção e biodisponibilidade previsível
- ✓ A aplicação exige pessoal adequadamente treinado.
- ✓ Necessidade de observação estrita de processos assépticos.
- ✓ Os efeitos das Fármacos em caso de hipersensibilidade são difíceis de reverter.
- ✓ Pode ser inconveniente quando as aplicações se tornam muito frequentes.

2.2 – Via parenteral INTRAVENOSA

- ➤ Absorção: Nesta via não há absorção (100% disponível) e sim efeito/ação rápida, fornecendo a mais rápida e completa disponibilidade do fármaco.
- Locais de administração: Veia basílica ou cefálica do antebraço.
- ➤ É indicada em emergências médicas, doenças graves e choque
- Exemplos: dipirona, penicillina G, bromoprida e tenoxicam (antiflamatório usado em hospitais após cirurgia de bucomaxilo)

2.2 – Via parenteral INTRAVENOSA

Vantagens via intravenosa

- ✓ Obtenção rápida de efeitos;
- ✓ Administração de grandes volumes em infusão lenta;
- ✓ Aplicação de substâncias irritantes diluídas;

Desvantagens via intravenosa

- Não existe recuperação depois que a droga é injetada.
- Imprópria para solventes oleosos e substâncias insolúveis.
- ✓ Riscos de infecções por contaminantes (bactérias ou vírus) e reações anafiláticas.
- ✓ Traumática
- ✓ Auto admnistração

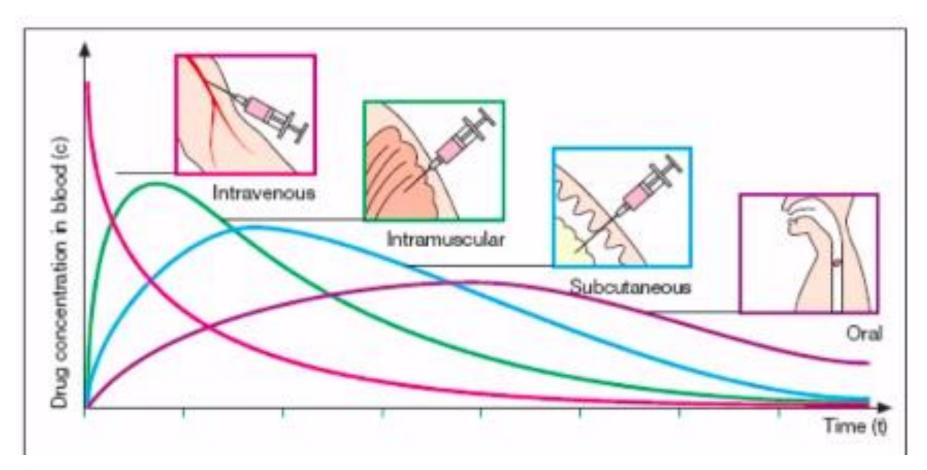
2.3 – Via parenteral SUBCUTÂNEA

Absorção: Endotélio dos capilares vasculares e linfáticos.

Locais de administração: face externa da porção superior do braço, face anterior da coxa e tecido frouxo do abdômen inferior.

- O fármaco é depositado sob a pele nos tecidos adiposos.
- É uma via de liberação lenta e constante.
- Formas farmacêuticas: soluções e suspensões.
- Exemplos: insulina

2.3 – Via parenteral SUBCUTÂNEA


Vantagens

- ✓ Absorção boa e constante para soluções;
- ✓ Absorção lenta para suspensões e pellets sólidos em um período de semanas ou meses.

Desvantagens

- ✓ Facilidade de sensibilização do paciente.
- ✓ Administração de pequenos volumes (0,5 2 ml).
- ✓ Só pode ser utilizada para fármacos que não irritam o tecido caso contrário, pode sobrevir dor intensa necrose e descamação.
- ✓ O local da injeção deve ser variado quando houver necessidades de aplicações frequentes.

DIFERENÇAS NA ABSORÇÃO DOS FÁRMACOS

